67 research outputs found

    The New South Wales iVote System: Security Failures and Verification Flaws in a Live Online Election

    Full text link
    In the world's largest-ever deployment of online voting, the iVote Internet voting system was trusted for the return of 280,000 ballots in the 2015 state election in New South Wales, Australia. During the election, we performed an independent security analysis of parts of the live iVote system and uncovered severe vulnerabilities that could be leveraged to manipulate votes, violate ballot privacy, and subvert the verification mechanism. These vulnerabilities do not seem to have been detected by the election authorities before we disclosed them, despite a pre-election security review and despite the system having run in a live state election for five days. One vulnerability, the result of including analytics software from an insecure external server, exposed some votes to complete compromise of privacy and integrity. At least one parliamentary seat was decided by a margin much smaller than the number of votes taken while the system was vulnerable. We also found protocol flaws, including vote verification that was itself susceptible to manipulation. This incident underscores the difficulty of conducting secure elections online and carries lessons for voters, election officials, and the e-voting research community

    Public Evidence from Secret Ballots

    Full text link
    Elections seem simple---aren't they just counting? But they have a unique, challenging combination of security and privacy requirements. The stakes are high; the context is adversarial; the electorate needs to be convinced that the results are correct; and the secrecy of the ballot must be ensured. And they have practical constraints: time is of the essence, and voting systems need to be affordable and maintainable, and usable by voters, election officials, and pollworkers. It is thus not surprising that voting is a rich research area spanning theory, applied cryptography, practical systems analysis, usable security, and statistics. Election integrity involves two key concepts: convincing evidence that outcomes are correct and privacy, which amounts to convincing assurance that there is no evidence about how any given person voted. These are obviously in tension. We examine how current systems walk this tightrope.Comment: To appear in E-Vote-Id '1

    End-to-end verifiable elections in the standard model

    Get PDF
    We present the cryptographic implementation of “DEMOS”, a new e-voting system that is end-to-end verifiable in the standard model, i.e., without any additional “setup” assumption or access to a random oracle (RO). Previously known end-to-end verifiable e-voting systems required such additional assumptions (specifically, either the existence of a “randomness beacon” or were only shown secure in the RO model). In order to analyze our scheme, we also provide a modeling of end-to-end verifiability as well as privacy and receipt-freeness that encompasses previous definitions in the form of two concise attack games. Our scheme satisfies end-to-end verifiability information theoretically in the standard model and privacy/receipt-freeness under a computational assumption (subexponential Decisional Diffie Helman). In our construction, we utilize a number of techniques used for the first time in the context of e-voting schemes that include utilizing randomness from bit-fixing sources, zero-knowledge proofs with imperfect verifier randomness and complexity leveraging

    Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development

    Get PDF

    Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution

    Get PDF
    Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n  =  2 RMP maintaining good confinement HH(98,y2)0.95{{H}_{\text{H}\left(98,\text{y}2\right)}}\approx 0.95 . Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes

    Abstracts of presentations on plant protection issues at the xth international congress of virology: August 11-16,1996 Binyanei haOoma, Jerusalem, Israel Part 2 Plenary Lectures

    Get PDF

    Metabolic control of embryonic dormancy in apple seed: seven decades of research

    Full text link
    corecore